8,485 research outputs found

    Neutron Diffusion and Nucleosynthesis in an Inhomogeneous Big Bang Model

    Full text link
    This article presents an original code for Big Bang Nucleosynthesis in a baryon inhomogeneous model of the universe. In this code neutron diffusion between high and low baryon density regions is calculated simultaneously with the nuclear reactions and weak decays that compose the nucleosynthesis process. The size of the model determines the time when neutron diffusion becomes significant. This article describes in detail how the time of neutron diffusion relative to the time of nucleosynthesis affects the final abundances of He4, deuterium and Li7. These results will be compared with the most recent observational constraints of He4, deuterium and Li7. This inhomogeneous model has He4 and deuterium constraints in concordance for baryon to photon ratio eta = (4.3 - 12.3) X 10^{-10} Li7 constraints are brought into concordance with the other isotope constraints by including a depletion factor as high as 5.9. These ranges for the baryon to photon ratio and for the depletion factor are larger than the ranges from a Standard Big Bang Nucleosynthesis model.Comment: 7/15, added reference

    Por que consumir pescado é estratégico para o Brasil?

    Get PDF
    bitstream/item/79994/1/ADM135.pdfFormato eletrônico. Disponível também em: Dourados News, Agronline, ZooNews, AgoraMS, BBC News, Folha do MS, Infobibos

    A Comparison of Two-Level and Multi-level Modelling for Cloud-Based Applications

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21151-0_2The Cloud Modelling Framework (CloudMF) is an approach to apply model-driven engineering principles to the specification and execution of cloud-based applications. It comprises a domain-specific language to model the deployment topology of multi-cloud applications, along with a models@run-time environment to facilitate reasoning and adaptation of these applications at run-time. This paper reports on some challenges encountered during the design of CloudMF, related to the adoption of the two-level modelling approach and especially the type-instance pattern. Moreover, it proposes the adoption of an alternative, multi-level modelling approach to tackle these challenges, and provides a set of criteria to compare both approaches.The research leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement numbers 317715 (PaaSage), 318392 (Broker@Cloud), and 611125 (MONDO), the Spanish Ministry under project Go Lite (TIN2011-24139), and the Madrid Region under project SICOMORO (S2013/ICE-3006)

    Vortex ratchet reversal: The role of interstitial vortices

    Get PDF
    Triangular arrays of Ni nanotriangles embedded in superconducting Nb films exhibit unexpected dynamical vortex effects. Collective pinning with a vortex lattice configuration different from the expected fundamental triangular "Abrikosov state" is found. The vortex motion which prevails against the triangular periodic potential is produced by channelling effects between triangles. Interstitial vortices coexisting with pinned vortices in this asymmetric potential, lead to ratchet reversal, i.e. a DC output voltage which changes sign with the amplitude of an applied alternating drive current. In this landscape, ratchet reversal is always observed at all magnetic fields (all numbers of vortices) and at different temperatures. The ratchet reversal is unambiguously connected to the presence of two locations for the vortices: interstitial and above the artificial pinning sites.Comment: 21 pages, 4 figures, 1 Tabl

    A Contracting, Turbulent, Starless Core in the Serpens Cluster

    Get PDF
    We present combined single-dish and interferometric CS(2--1) and N2H+(1--0) observations of a compact core in the NW region of the Serpens molecular cloud. The core is starless according to observations from optical to millimeter wavelengths and its lines have turbulent widths and ``infall asymmetry''. Line profile modeling indicates supersonic inward motions v_in>0.34 km/s over an extended region L>12000AU. The high infall speed and large extent exceeds the predictions of most thermal ambipolar diffusion models and points to a more dynamical process for core formation. A short (dynamic) timescale, ~1e5 yr=L/v_in, is also suggested by the low N2H+ abundance ~1e-10.Comment: 11 pages including 2 figures. Accepted for publication in the Astrophysical Journal Letter
    • …
    corecore